Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping

Traditional resting-state network concept is based on calculating linear dependence of spontaneous low frequency fluctuations of the BOLD signals of different brain areas, which assumes temporally stable zero-lag synchrony across regions. However, growing amount of experimental findings suggest that functional connectivity exhibits dynamic changes and a complex time-lag structure, which cannot ...

متن کامل

Dynamic effective connectivity in resting state fMRI

Context-sensitive and activity-dependent fluctuations in connectivity underlie functional integration in the brain and have been studied widely in terms of synaptic plasticity, learning and condition-specific (e.g., attentional) modulations of synaptic efficacy. This dynamic aspect of brain connectivity has recently attracted a lot of attention in the resting state fMRI community. To explain dy...

متن کامل

Brain Connections – Resting State fMRI Functional Connectivity

With the introduction of electroencephalography (EEG) in 1930, researchers began to explore spontaneous activity in the brain by recording the individual, independently of any task. Subsequently, evoked potential studies, where electrical potentials were recorded at the onset of a stimulus, marked a milestone in brain research. Utilizing such methods coupled with experimental psychology, resear...

متن کامل

A Longitudinal Model for Functional Connectivity Using Resting-State fMRI

Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. The current fMRI modeling literature lacks a generally applicable model appropriate for longitudinal designs. In this work, we build a novel longitudinal functional connectivity (FC) model using a variance components approach. First, for all subjects’ visits, we account for the autocorr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Neuroscience

سال: 2017

ISSN: 1662-453X

DOI: 10.3389/fnins.2017.00075